The Nature of Active Sites on TiO_2 and TiO_2 -SiO₂ for the Isomerization of Butenes

HIDESHI HATTORI, MASAYOSHI ITOH AND KOZO TANABE

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan

Received September 16, 1974

The isomerization of 1-butene and cis-2-butene was studied over TiO₂ and TiO₂-SiO₂ having different mole ratios with various treatments on the surface. The activity decreased with increasing the evacuation temperature on both catalysts. The ratio of cis/trans-2-butene from 1-butene increased when TiO₂ and TiO₂-SiO₂ were evacuated above 400 and 500°C, respectively. Oxygen treatment of the catalysts evacuated at 450°C decreased the activity of TiO₂ but increased that of TiO₂-SiO₂. Hydrogen treatment showed the opposite effect to that of oxygen.

 Ti^{3+} were produced on the surface by the evacuation above 300 and 400°C on TiO_2 and TiO_2 -SiO₂, respectively. On these surfaces the nitrobenzene anion radicals were formed by electron transfer to nitrobenzene from Ti^{3+} and Ti^{2+} .

The change in nature of active sites after several treatments was discussed in terms of surface acidity and electron donating property.

INTRODUCTION

In previous papers (1,2), the surface and catalytic properties of TiO₂ and TiO₂-SiO₂ were reported. The catalytic property of TiO₂-SiO₂ was quite different from that of TiO₂. For instance, TiO₂-SiO₂ showed high activity for the amination of phenol with ammonia, which was higher than that of SiO₂-Al₂O₃, whereas TiO₂ was almost inactive for this reaction. The difference was attributed to the strong acid sites on TiO₂-SiO₂, which was generated by mixing of two oxides (3,4).

For the isomerization of butenes, TiO_2 calcined in air was less active than TiO_2 -SiO₂, but the selectivity of *cis/trans*-2-butene from 1-butene was higher than that of TiO_2 -SiO₂ (1). Shannon *et al.* (5) have also reported the isomerization of butenes over TiO_2 of rutile type and suggested that more than one kind of sites participated in the reaction. However, the nature of active sites was not examined so extensively.

On the surface properties of TiO_2 -SiO₂, Karakchiev (6) investigated its oxidative and structural aspects. The existence of electron donating sites on TiO_2 was revealed by Che *et al.* (7), and the number of the sites was reported to be decreased remarkably by the addition of SiO_2 (8).

The present paper attempts to elucidate the nature of active sites on TiO_2 and TiO_2 -SiO₂ for the isomerization of butenes by measuring the changes of the surface property with various treatments of the catalyst combined with the kinetic measurement.

EXPERIMENTAL METHODS

Catalyst Preparation

 TiO_2 -SiO₂ was obtained from the mixed solution of ethyl orthosilicate and titanium tetrachloride by coprecipitation with aqueous ammonia at pH 7.5. The precipitate was aged over water bath for 2 hr and washed with distilled water until no chloride ions were detected and dried at 100°C for 20 hr.

 $TiO_2(I)$ was prepared by the hydrolysis of titanium tetrachloride followed by aging, washing and drying as above. $TiO_2(II)$ and $TiO_2(III)$ were "Titanox" AWD and RA-10 from Titanium Pigment Co. which had structure of anatase and rutile, respectively.

Reaction Procedure

A closed circulation reactor having a volume of about 900 ml was used for the kinetic measurement. A 50 mg of the catalyst was placed in a reactor with quartz tips and evacuated for 3 hr at various temperatures. After cooling to 200°C, 200 Torr (1 Torr = 133.3 N m⁻²) of the reactant were introduced and the reaction products were analyzed periodically by gas chromatography. The analysis was carried out at 0°C on a 4 m column (4 mm diam Cu tubing) containing 30% propylene carbonate on 30-60 mesh Uniport C. In poisoning experiments, 1 Torr of NH₃ or 3 Torr of CO₂ were mixed with 200 Torr of butene and served to the reaction. To examine the effect of the treatment with H_2 or O_2 , the catalyst evacuated at 450°C was exposed to H₂ of 23 Torr at 450°C or to O₂ of 38 Torr at 200°C followed by the evacuation at the same temperatures. The activity was expressed by the initial conversion per minute per unit weight of catalyst. The ratios of *cis/trans*-2-butene and 1-/trans-2-butene were obtained by extrapolation to zero conversion.

Butenes were purified by passing through the zeolum F-9 (synthetic zeolite from Tekko-sha, structure and composition are identical to 13-X) kept at dry ice temperature and distilled before use.

ESR Measurement

Samples of 20 mg in the ESR cells which were attached to the same vacuum line were first evacuated at 200°C for 1.5 hr. One of them was taken off from the system by sealing the upper part of the cell. Then, the other samples were heated up to 300°C under vacuum and continued to evacuate for 1.5 hr at this temperature. The second sample was taken off as above. These procedures were repeated every 100°C increment until the last sample was evacuated at 700°C. These samples were subjected to ESR measurement. After recording the spectra, the samples were exposed to nitrobenzene vapor through breakable seals for 2 days at room temperature. Then, excess nitrobenzene was trapped by liquid nitrogen and subjected to ESR measurement again. In some experiments, the sample was treated with O_2 or H_2 . ESR spectrum was measured both at room temperature and at -195° C.

RESULTS

Butene Isomerization

The activities and the selectivities (the ratios of two products) for the isomerizations of 1-butene and *cis*-2-butene over the catalysts having different composition and evacuated at 450°C are shown in Figs. 1 and 2. A big difference in the selectivity was observed between $TiO_2(I)$ and the mixed oxides. Over $TiO_2(I)$, the ratios of *cis/trans* and 1-*/trans* were much higher. The selectivity difference was more prominent compared with the case where the catalysts calcined *in air* were used as in our previous paper (1). The difference in the activity between TiO_2 and TiO_2 -SiO₂ was not so large in the present case where

FIG. 1. Activities (\bigcirc —) and selectivities (ratios of *cis/trans*-2-butene) (\bigcirc —) over TiO₂-SiO₂ of different compositions.

FIG. 2. Activities (\bigcirc —) and selectivities (ratio of 1-/*trans*-2-butene) (\bigcirc —) over TiO₂-SiO₂ of different compositions.

the catalysts calcined *in vacuo* were used, though it was very big in our previous study (1).

The activities and the selectivities of $TiO_2(I)$ and TiO_2-SiO_2 (9:1) for the isomerization of 1-butene were quite dependent on the evacuation temperature as shown in Figs. 3 and 4. Over $TiO_2(I)$, the activity decreased with increasing the evacuation temperature. The activity curve has a shoulder around 500°C. Remarkable change in selectivity was observed at 400°C. The formation of *cis*-2-butene became preferential at higher evacuation temperature.

FIG. 3. Dependencies of the activity and the selectivity on the evacuation temperature in the isomerization of 1-butene over $TiO_2(I)$.

FIG. 4. Dependencies of the activity and the selectivity on the evacuation temperature in the isomerization of 1-butene over TiO_2-SiO_2 (9:1).

Substantially the same dependencies of the activity and the selectivity on the evacuation temperature were observed over TiO_2-SiO_2 (9:1). The different features from those of $TiO_2(I)$ are as follows. The temperature which gives the maximum selectivity is higher in TiO_2-SiO_2 (9:1) by about 100°C. The activity still remained on TiO_2-SiO_2 (9:1) after severe evacuation at 700°C, whereas it diminished completely on $TiO_2(I)$.

 $TiO_2(II)$ and $TiO_2(III)$ did not show any measurable activity when evacuated at 500 or 700°C. $TiO_2(I)$ which had been calcined in air at 700°C and evacuated at 200°C also showed no activity.

The results of various treatments of catalysts evacuated at 450°C are listed in Table 1. These treatments or poisoning resulted in different selectivities over $TiO_2(I)$, but brought about little change over TiO_2 -SiO₂ (9:1). This suggests that only one kind of active sites is operative on TiO_2 -SiO₂ (9:1), but more than one kind on $TiO_2(I)$ after the evacuation at 450°C.

The change in activity over $TiO_2(I)$ with various treatments also differed from that of TiO_2 -SiO₂ (9:1). The difference was prominent when treated with O₂. This treatment for TiO_2 -SiO₂ (9:1) enhanced

 TABLE 1

 Changes in the Activity and the Ratio of

 cis/trans-2-Butene in the Isomerization of

 1-Butene with Various Treatments

 and Poisonings After Evacuation

 at 450 °C

	TiO ₂ (I)		TiO ₂ -SiO ₂ (9:1)	
	Activity (% min ⁻¹ g ⁻¹)	Ratio of cis/trans- 2-butene	Activity (% min ⁻¹ g ⁻¹)	Ratio of cis/trans- 2-butene
Untreated	13.3	6.1	13.2	2.2
Poisoned with NH	3.0	9.0	2.8	22
Poisoned	5.0	2.0	2.0	2.2
with CO ₂	14.2	6.8	14.9	2.3
Treated				
with O ₂	7.0	2.9	27.7	1.9
Treated with H ₂	15.8	11.0	11.2	3.2

the activity twice as much as the original one, but did not change the cis/trans ratio. For TiO₂(1), it decreased the activity to a half of its original one and decreased the cis/trans ratio.

 H_2 treatment had opposite effect on the

FIG. 5. ESR signals of TiO₂ evacuated at 400 and 600°C measured at room temperature (a) and -195° C (b).

selectivity and the activity to that of O_2 treatment. It increased the selectivity and the activity of TiO₂(I), but decreased the activity of TiO₂-SiO₂ (9:1).

With NH₃ adsorption, $TiO_2(I)$ and TiO_2-SiO_2 (9:1) were decreased in activity. The selectivity of $TiO_2(I)$ increased, whereas that of TiO_2-SiO_2 (9:1) was unchanged. CO₂ adsorption had no effect on two catalysts.

ESR Spectra

TiO₂(1) showed only sharp signal of g = 2.002 at room temperature as shown in Fig. 5a. The width of the signal varied with the evacuation temperature. These were 6.5 G for the samples pretreated at 300-500°C and 1.5 G for those at 600-700°C. Peak height of this signal increased up to 600°C, but decreased considerably at 700°C. This sharp signal was also observed on TiO₂(II) and TiO₂(III). Peak heights were the same order of magnitude for TiO₂(I), (II), and (III) when evacuated at 500°C.

As the measurement temperature was reduced to -195° C, the broad signal of g = 1.940 appeared in addition to the sharp signal as shown in Fig. 5b. The broad signal was assigned to Ti³⁺ (9,10). With TiO₂-SiO₂ (9:1), the sharp signal was very small. The broad signal was detectable at room temperature and developed greatly at -195° C.

On exposure to nitrobenzene, strong signal developed on TiO_2 and TiO_2-SiO_2 (9:1) at room temperature. An example is shown in Fig. 6. This signal can be as-

FIG. 6. ESR signal of nitrobenzene on TiO_2 evacuated at 500°C, measured at room temperature.

FIG. 7. Amounts of nitrobenzene anion radicals and Ti^{3+} of TiO_2 evacuated at various temperatures. (Δ ---) nitrobenzene anion radical, Ti^{3+} before (\bigcirc —) and after (\bigcirc —) exposure to nitrobenzene.

signed to the nitrobenzene anion radical (11).

The ESR peak intensities of the nitrobenzene anion radical at room temperature and Ti³⁺ at -195° C before and after the exposure to nitrobenzene are plotted against evacuation temperatures in Figs. 7 and 8. The maximum amounts of Ti³⁺ were observed at 400 and 500°C for TiO₂(I) and TiO₂-SiO₂ (9:1), respectively.

In the lower pretreatment range, the amount of Ti^{3+} decreased on exposure to nitrobenzene to produce the anion radical, Ti^{3+} itself being oxidized into Ti^{4+} . This in-

FIG. 8. Amounts of nitrobenzene anion radicals and Ti^{3+} of TiO_2 -SiO₂ (9:1) evacuated at various temperatures. (\triangle ---) nitrobenzene anion radical, Ti^{3+} before (\bigcirc --) and after (\bigcirc --) exposure to nitrobenzene.

dicates that electron donating sites are Ti^{3+} , most of which are located on the surface. In the higher pretreatment range, the amount of Ti^{3+} increased on the contrary. As the pretreatment temperature becomes higher, the reduction of the surface seems to proceed further to form a small amount of Ti^{2+} . Therefore, a part of the anion radicals is considered to be formed on Ti^{2+} to oxidize it into Ti^{3+} , which caused to increase the amount of Ti^{3+} at higher evacuation temperature.

Both TiO₂(II) and TiO₂(III) did not show any detectable signal of Ti³⁺ after evacuated at 500°C. The amount of nitrobenzene anion radical on TiO₂(II) or TiO₂(III) was less than 1/50 of that on TiO₂(I).

 H_2 treatment at 450°C for TiO₂(I) and TiO_2 -SiO₂ (9:1) which had been evacuated at 500°C resulted in great increase in the amount of Ti^{3+} , whereas O_2 treatment at 200°C eliminated Ti³⁺. TiO₂(I) which was calcined at 700°C in air followed by evacuation at 500°C showed a small signal of Ti³⁺. H₂ treatment of TiO₂(II) and TiO₂(III) at 500°C generated Ti³⁺ whose shape was much more symmetrical than those on $TiO_2(I)$ or TiO_2-SiO_2 (9:1). The exposure of these surfaces to nitrobenzene, however, did not result in the formation of the anion radical or the decrease of Ti³⁺. Most of Ti³⁺ are considered to be inside of the solid and are not accessible to nitrobenzene molecule.

DISCUSSION

As mentioned in the foregoing section, the formation of nitrobenzene anion radical on the surface may be caused by surface Ti^{3+} and Ti^{2+} as follows:

nitrobenzene + Ti³⁺

= nitrobenzene anion radical + Ti^{4+} , nitrobenzene + Ti^{2+}

= nitrobenzene anion radical + Ti^{3+} .

The changes in the number of the anion radical with the evacuation temperature on

TiO₂(1) and TiO₂–SiO₂ (9:1) are similar to the selectivity changes for 1-butene isomerization. Therefore, one of the possible active sites for the isomerization is Ti^{3+} on the surface.

Shannon *et al.* (5) denied the possibility of Ti³⁺ as active sites on TiO₂ for the isomerization of butene from the fact that O₂ did not affect the activity. However, the activity of TiO₂(I) evacuated at 450°C was certainly affected by O₂ treatment. As the production of Ti³⁺ on the surface depends on the way of the preparation and the pretreatment condition, there might be no Ti³⁺ on the surface of their TiO₂, whose activity was not affected by O₂ treatment.

The centers which gave the sharp signal (Fig. 5a) were called "paramagnetic defect" by Hasegawa and Kawaguchi (12) and reported to be active sites for the condensation reaction of acetaldehyde. The possibility of the centers being active for the isomerization of butene is not plausible, because three kinds of TiO_2 used here showed almost the same amount of these centers, but only one of them was active.

The cis/trans ratio from 1-butene isomerization over solid acids, where the reaction proceeds via butyl carbonium ion. is generally 1-2 (13,14). The ratio of 1-/trans is less than 1 in the isomerization of *cis*-2-butene. Over solid bases where π allyl carbanion is considered as an intermediate, both ratios of cis/trans and 1-/trans are much higher than 1(14-19). From the value of the ratio (Figs. 1 and 2), it is suggested that the isomerizations occur through π -allyl carbanion over $TiO_2(I)$ evacuated above 400°C and TiO_2 - SiO_2 (9:1) above 500°C. Below these evacuation temperatures, carbonium ion mechanism seems to operate.

In the previous paper (1), the mechanism of the generation of acid sites by mixing of two oxides, TiO_2 and SiO_2 , was proposed. The acid sites of the mixed oxide in which the major component oxide is TiO₂ are caused by the excess positive charge on Si⁴⁺. On these acid sites, the isomerization may proceed via carbonium ion to give *cis/trans* ratio around 1. When evacuated at high temperature, Ti4+ in TiO₂-SiO₂ are reduced into Ti³⁺ by releasing one of the oxygen atoms. Hence, the positive charge on Si⁴⁺ is reduced by the transfer of negative charge to Si⁴⁺ through oxygen bridge, which results in the elimination of acid sites. Ti3+ thus produced would act as electron donating centers and become the active sites for the isomerization of 1-butene over which the reaction proceeds via π -allyl carbanion to give high cis/trans ratio.

As TiO₂(1) is reported to have weak Brönsted acid sites when pretreated at lower temperature (20), the active sites of TiO₂(1) evacuated below 400°C are possibly acidic sites over which the reaction proceeds via carbonium ion. When evacuated above 400°C, some fraction of Ti⁴⁺ are reduced to Ti³⁺ which become the active sites for the isomerization over which π -allyl carbanion mechanism is operative to give high *cis/trans* ratio.

Since Ti³⁺ began to appear at lower temperature in the case of $TiO_2(I)$, Ti^{4+} of $TiO_{2}(I)$ is considered to be reduced much easier than that in TiO_2 -SiO₂ (9:1). The evacuation at 450°C may result in the production of the active center of electron donating property by reducing a large part of Ti^{4+} of $TiO_2(1)$, but may not be sufficient to reduce a large part of Ti⁴⁺ in TiO_2 -SiO₂ (9:1), as judged from the selectivity changes with various treatments and poisonings shown in Table 1. Since the activity decreased with the increase of the evacuation temperature (Figs. 3 and 4), the activity of acidic site is considered to be higher than that of Ti³⁺. Thus, the reaction proceeds mainly on acid sites until a large part of Ti⁴⁺ converts to Ti³⁺. On exposure to O_2 , Ti^{3+} is expected to be oxidized to Ti4+, which regenerates acid sites on TiO_2 -SiO₂ (9:1) and the activity increases

as shown in Table 1. Ti^{3+} of $TiO_2(I)$ is also oxidized, but it does not seem to regenerate acid sites. The change in nature of active sites on two catalysts with evacuation temperature and O_2 treatment could be explained as follows.

In the case of TiO₂(I) evacuated below 400°C, Brönsted acid sites (surface OH groups on Ti⁴⁺) are active. By evacuation at 450°C, the dehydration of OH groups and the reduction of Ti⁴⁺ proceed, which cause the generation of Ti³⁺. Thus, the surface has both Brönsted acid sites and the electron donating centers. On exposure to O₂, Ti³⁺ oxidizes to Ti⁴⁺, but Brönsted acid sites are not reproduced as H₂O might be necessary to produce OH group. Raising the evacuation temperature above 450°C causes further reduction and Ti²⁺ begins to appear.

In the case of TiO_2 -SiO₂ (9:1) evacuated below 450°C, Brönsted and/or Lewis acid sites of Si⁴⁺ induced by Ti⁴⁺ are present. By the evacuation at 450°C, a part of Ti⁴⁺ are reduced to Ti³⁺ which results in the decrease of acid sites and the appearance of the electron donating sites. On exposing to O₂, Ti³⁺ changes to Ti⁴⁺ which reproduces acid sites of Si⁴⁺. As a result, the activity for the isomerization of 1-butene increases. The evacuation above 450°C gives rise to the reduction of Ti⁴⁺ to Ti³⁺ and further to Ti²⁺. The higher temperature is required for TiO_2 -SiO₂ (9:1) to reduce the surface to the same extent as that of $TiO_2(I)$. After complete reduction of Ti⁴⁺, the surface shows only electron donating property. Since the selectivities of all the mixed oxides were substantially the same, the other mixed oxides having different molar ratios of Ti/Si probably have similar properties as those of TiO₂-SiO₂ (9:1).

It should be noted that the above discussion on the nature of TiO_2 can be applied only to the TiO_2 prepared by the present method. When the TiO_2 was calcined once

in air at 700°C, it showed different property from untreated TiO_2 ; no activity was observed with the catalyst evacuated at 200°C.

Since $TiO_2(II)$ and $TiO_2(III)$ also showed different property, the nature of TiO_2 after certain treatment depends strongly on the preparation method of TiO_3 .

REFERENCES

- 1. Itoh, M., Hattori, H., and Tanabe, K., J. Catal. 35, 225 (1974).
- 2. Tanabe, K., Itoh, M., and Sato, M., Chem. Commun. 1973, 676.
- Shibata, K., Kiyoura, T., Kitagawa, J., Sumiyoshi, T., and Tanabe, K., Bull. Chem. Soc. Jap. 46, 2985 (1973).
- Tanabe, K., Sumiyoshi, T., Shibata, K., Kiyoura, T., and Kitagawa, J., Bull. Chem. Soc. Jap. 47, 1064 (1974).
- 5. Shannon, I. R., Lake, I. J. S., and Kemball, C., *Trans. Faraday Soc.* **63**, 2769 (1967).
- 6. Karakchiev, L. G., Kinet. Katal. 6, 904 (1965).
- Che, M., Naccache, C., and Imelik, B., J. Catal. 24, 328 (1972).
- Hosaka, H., Kawashima, N., and Meguro, K., Bull. Chem. Soc. Jap. 45, 3371 (1972).
- Naccache, C., Imelik, B., and Prettre, M., Acad. Sci., Ser. C 264, 1901 (1967).
- Mashchenko, A. I., Kazanskii, V. B., Pariiskii, G. B., and Sharapov, V. M., *Kinet. Katal.* 8, 853 (1967).
- 11. Tench, A. J., and Nelson, R. L., *Trans. Faraday* Soc. 63, 2254 (1967).
- Hasegawa, S., and Kawaguchi, T., Nippon Kagaku Zasshi 92, 389 (1971).
- Hightower, J. W., and Hall, W. K., Chem. Eng. Progr. 63, 122 (1967).
- 14. Foster, N. F., and Cvetanovic, R. J., J. Amer. Chem. Soc. 82, 4274 (1960).
- 15. Banks, S., J. Amer. Chem. Soc. 87, 3245 (1965).
- Bank, S., Schreisheim, A., and Rowe, C. A., Jr., J. Amer. Chem. Soc. 85, 2115 (1973).
- Chang, C. C., Conner, W. C., and Kokes, R. J., J. Phys. Chem. 77, 1957 (1973).
- Haag, W. O., and Pines, H., J. Amer. Chem. Soc. 82, 387 (1960).
- Hattori, H., Yoshii, N., and Tanabe, K., Proc. Int. Congr. Catal., 5th, 1972 10, 233 (1973).
- Tanabe, K., Ishiya, C., Matsuzaki, I., Ichikawa, I., and Hattori, H., Bull. Chem. Soc. Jap. 45, 47 (1972).